Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ghasem Rezanejade Bardajee, Mitchell A. Winnik and Alan J. Lough*

Department of Chemistry, University of Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.070$
$w R$ factor $=0.208$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Succinimidyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate chloroform solvate

In the title molecular structure, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{CHCl}_{3}$, the dihedral angle between the two fused, essentially planar, sixmembered rings is 5.4 (2) ${ }^{\circ}$. In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking interactions connect molecules into two-dimensional layers.

Comment

For background information and relevant references see the previous paper (Bardajee et al., 2006). A view of the molecular structure of the title compound, (2), is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. Unlike in the molecular structure of 7-diethylaminocoumarin-3carboxylic acid, (1) (Bardajee et al., 2006), the two fused sixmembered rings in (2) are not coplanar but instead have an angle of 5.4 (2) A between their least-squares planes. The dihedral angles between the six-membered rings $\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{O} 1$ and the five-membered ring $\mathrm{N} 2 / \mathrm{C} 15-\mathrm{C} 18$ are 73.9 (2) and 77.1 (2) ${ }^{\circ}$, respectively. In the crystal structure, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and significant $\pi-\pi$ stacking interactions [where $\operatorname{Cg} 1 \cdots \operatorname{Cg} 2\left(\frac{3}{2}-x, \frac{3}{2}-y, 1-z\right)=$ 3.695 (3) \AA ($C g 1$ and $C g 2$ are the centroids defined by ring atoms O1/C1-C4/C9 and C4-C9 respectively) and the perpendicular distance is $3.43 \AA$] connect molecules into layers, and chloroform solvent molecules are located between these layers (Fig. 2).

Received 6 June 2006
Accepted 8 June 2006
stirring for 1 h at this temperature, $1,3-N, N^{\prime}$-dicyclohexylcarbodiimide ($226.96 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added. The solution was stirred at 263 K for 12 h . The solution was filtered to remove dicyclohexylurea. A 2-propanol-hexane mixture (1:20) was added to the filtrate to give product (2) as a yellow solid ($315 \mathrm{mg}, 88 \%$). X-ray quality crystals were obtained by slow recrystallization of (2) from chloroform at 277 K .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{CHCl}_{3}$
$M_{r}=477.71$
Monoclinic, $C 2 / c$
$a=19.601$ (3) А
$b=9.3170(14) \AA$
$c=22.807$ (3) \AA
$\beta=93.429(9)^{\circ}$
$V=4157.6(10) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.526 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.48 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& \text { Needle, yellow } \\
& 0.30 \times 0.16 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD diffractometer
φ scans and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.746, T_{\text {max }}=0.964$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.094 P)^{2} \\
&+7.3572 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

11417 measured reflections
3598 independent reflections
2151 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.126$
$\theta_{\text {max }}=25.2^{\circ}$
$R\left[F>2 \sigma\left(F^{2}\right)\right]=0.070$
$S=1.05$
3598 reflections
272 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C9	$1.380(6)$	$\mathrm{O} 4-\mathrm{N} 2$	$1.390(6)$
O1-C1	$1.393(7)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.393(7)$
O2-C1	$1.201(6)$	$\mathrm{N} 2-\mathrm{C} 18$	$1.383(8)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.212(7)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.400(8)$
C7-N1-C12	$121.4(5)$	$\mathrm{C} 18-\mathrm{N} 2-\mathrm{C} 15$	$115.2(5)$
C7-N1-C10	$122.3(5)$	$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 15$	$121.4(5)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 10$	$116.2(5)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$128.3(6)$
C18-N2-O4	$122.2(5)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 S-\mathrm{H} 1 S A \cdots \mathrm{O}^{\text {i }}$	1.00	2.28	3.240 (7)	160
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 3^{\text {ii }}$	0.95	2.59	3.219 (7)	124
C5-H5A $\cdots \mathrm{O}^{\text {6 }}{ }^{\text {ii }}$	0.95	2.50	3.395 (7)	157
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O}^{\text {iii }}$	0.98	2.53	3.473 (9)	162
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.99	2.54	3.358 (8)	140
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.99	2.42	3.195 (8)	135

Analysis of the data using PLATON (Spek, 2003) revealed that the crystal was a non-merohedral twin and a twin rotation matrix $(-100,0 \overline{1} 0,0.13901)$ was applied. In subsequent refinements the

Figure 1
Molecular structure of (2), showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The solvent molecule has been omitted.

Figure 2
A partial packing plot (Spek, 2003) of (2), showing hydrogen bonds as dashed lines.
value of the weighted R-factor (for all data) improved from 0.303 to 0.209 . The twin fraction refined to 0.884:0.116 (2). The relatively high $R_{\text {int }}$ value is related to the twinning. H atoms bonded to C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ (aromatic), $0.99 \AA$ (methylene), $0.98 \AA$ (methyl) or $1.00 \AA$ (chloroform) and were included in the refinement in a riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC, the University of Toronto, for funding and the Iranian Ministry of Science and Technology for support.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.

organic papers

Bardajee, G. R., Winnik, M. A. \& Lough, A. J. (2006). Acta Cryst. E62, o3076o3078..
Berthelot, T., Talbot, J., Lain, G., Deleris, G. \& Latxague, L. J. (2005). J. Pept. Sci. 11, 153-160.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1 Windows NT Version. Bruker AXS Inc., Madison, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

